An extremely simple method for fabricating 3D protein microarrays with an anti-fouling background and high protein capacity.
نویسندگان
چکیده
Protein microarrays have become vital tools for various applications in biomedicine and bio-analysis during the past decade. The intense requirements for a lower detection limit and industrialization in this area have resulted in a persistent pursuit to fabricate protein microarrays with a low background and high signal intensity via simple methods. Here, we report on an extremely simple strategy to create three-dimensional (3D) protein microarrays with an anti-fouling background and a high protein capacity by photo-induced surface sequential controlled/living graft polymerization developed in our lab. According to this strategy, "dormant" groups of isopropyl thioxanthone semipinacol (ITXSP) were first introduced to a polymeric substrate through ultraviolet (UV)-induced surface abstraction of hydrogen, followed by a coupling reaction. Under visible light irradiation, the ITXSP groups were photolyzed to initiate surface living graft polymerization of poly(ethylene glycol) methyl methacrylate (PEGMMA), thus introducing PEG brushes to the substrate to generate a full anti-fouling background. Due to the living nature of this graft polymerization, there were still ITXSP groups on the chain ends of the PEG brushes. Therefore, by in situ secondary living graft cross-linking copolymerization of glycidyl methacrylate (GMA) and polyethylene glycol diacrylate (PEGDA), we could finally plant height-controllable cylinder microarrays of a 3D PEG network containing reactive epoxy groups onto the PEG brushes. Through a commonly used reaction of amine and epoxy groups, the proteins could readily be covalently immobilized onto the microarrays. This delicate design aims to overcome two universal limitations in protein microarrays: a full anti-fouling background can effectively eliminate noise caused by non-specific absorption and a 3D reactive network provides a larger protein-loading capacity to improve signal intensity. The results of non-specific protein absorption tests demonstrated that the introduction of PEG brushes greatly improved the anti-fouling properties of the pristine low-density polyethylene (LDPE), for which the absorption to bovine serum albumin was reduced by 83.3%. Moreover, the 3D protein microarrays exhibited a higher protein capacity than the controls to which were attached the same protein on PGMA brushes and monolayer epoxy functional groups. The 3D protein microarrays were used to test the immunoglobulin G (IgG) concentration in human serum, suggesting that they could be used for biomedical diagnosis, which indicates that more potential bio-applications could be developed for these protein microarrays in the future.
منابع مشابه
Anti-fouling behaviors of surface functionalized high density polyethylene membrane in microfiltration of bovine serum albumin protein
An essential characteristic for high performance inherently hydrophobic membranes such as microporous high density polyethylene (HDPE) membranes is to have a hydrophilic surface. In this project, wet chemical functionalization as a facile and effective method was developed to give a hydrophilic property to HDPE membranes using polar functional groups. KClO3, K2Cr2O7 and KMnO4 were selected as o...
متن کاملApplication of 3D-QSAR on a Series of Potent P38-MAP Kinase Inhibitors
One of the most applied methods in drug industry for development of new drugs is 3D-QSAR methodology. As p38-mitogen-activated protein kinase (p38-MAPK) plays a crucial role in regulating the production of such proinflammatory cytokines as tumor necrosis factor-α (TNF-α) and interleukin-1, emerging as an attractive target for new anti-inflammatory agents, we used a 3D-QSAR based method of Compa...
متن کاملHeterogeneous Functionalization of Polyethersulfone: A New Approach for pH-Responsive Microfiltration Membranes with Enhanced Antifouling Properties
In this work, 2,2’-azo-bis-butyronitrile (AIBN) was exploited as an initiator for the successful bulk heterogeneous functionalization of polyethersulfone (PES) using polymethacrylic acid (PMAA), for the first time. To this end, pH-responsive and exceptionally low fouling membranes of extremely low grafting degrees with low adhesion and high rejection of protein were fabricated. An added advanta...
متن کاملDesigning and Analyzing the Structure of DT-STXB Fusion Protein as an Anti-tumor Agent: An in Silico Approach
Background & Objective: A main contest in chemotherapy is to obtain regulator above the biodistribution of cytotoxic drugs. The utmost promising strategy comprises of drugs coupled with a tumor-targeting bearer that results in wide cytotoxic activity and particular delivery. The B-subunit of Shiga toxin (STxB) is nontoxic and possesses low immunogenicity that exactly binds to t...
متن کاملExpression and Simple Purification Strategy for the Generation of Anti-microbial Active Enterocin P from Enterococcus faecium Expressed in Escherichia coli ER2566
Background: Enterocin-P of Enterococcus faecium P13 (EntP) is of great interest as a food preservative and medicine due to its non-toxicity and broad antimicrobial spectrum in various pH, as well as its excellent thermal stability. However, recombinant production of EntP is still in laboratory because of low productivity and complex purification process. Objectives: In this study, we aimed to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Lab on a chip
دوره 14 14 شماره
صفحات -
تاریخ انتشار 2014